
ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Adjacent difference

2
Adjacent differenceAdjacent difference

Outline

• In this lesson, we will:

– Define an adjacent difference on an array

– Look at various implementations and issues with them

– Generalize the algorithm

– Look at the implementation and examples

3
Adjacent differenceAdjacent difference

Introduction

• Given an array, certain numerical algorithms require you

to calculate the difference between successive entries

array[0]

array[1] - array[0]

array[2] - array[1]

array[3] - array[2]

.

.

.

array[capacity - 1] - array[capacity - 2]

4
Adjacent differenceAdjacent difference

Implementation

• We will have an input and output arrays:
void adjacent_difference(

double array1[], std::size_t capacity

double array2[]

) {

array2[0] = array1[0];

for (std::size_t k{1}; k < capacity; ++k) {

array2[k] = array1[k] - array1[k - 1];

}

}

– It is assumed there is sufficient entries in array2

5
Adjacent differenceAdjacent difference

Example

• For example:
int main() {

std::size_t const N{ 5 };

double input[N]{ 3.2, 2.9, 3.1, 3.2, 3.7 };

double output[N];

adjacent_difference(input, N, output);

return 0;

}

– The output array is now:

– Note that the first entry allows you to recreate the original array

using a scan

3.2 -0.3 0.2 0.1 0.5

6
Adjacent differenceAdjacent difference

Problem

• Issue: What if you want the adjacent difference in place?
int main() {

std::size_t const N{ 5 };

double input[N]{ 3.2, 2.9, 3.1, 3.2, 3.7 };

adjacent_difference(input, N, input);

return 0;

}

– The values of the input array are now

3.2 -0.3 3.4 -0.2 3.9

7
Adjacent differenceAdjacent difference

A better implementation

• We must assume that the operations are in-place:
void adjacent_difference(

double array1[], std::size_t capacity

double array2[]

) {

for (std::size_t k{capacity - 1}; k > 0; ++k) {

array2[k] = array1[k] - array1[k - 1];

}

array2[0] = array1[0];

}

– This now also works in-place

however, unfortunately, some users require the operation in order

8
Adjacent differenceAdjacent difference

A better implementation

• To run in place and in order requires some finesse:
void adjacent_difference(

double array1[], std::size_t capacity

double array2[]

) {

double x0{ array1[0] };

array2[0] = x0;

for (std::size_t k1{1}, k2{1}; k1 < capacity; ++k1, ++k2) {

double x1{ array1[k1] };

array2[k2] = array1[k1] - x0;

x0 = x1;

}

}

9
Adjacent differenceAdjacent difference

Generalizing the range

• Have the algorithm work from

array1[begin1], ... , array1[end1 - 1]

array2[begin2], ...

• This is straight-forward:
void adjacent_difference(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2

) {

double x0{ array1[begin1] };

array2[begin2] = x0;

for (std::size_t k1{begin1 + 1}, k2{begin2 + 1};

k1 < end1; ++k1, ++k2) {

double x1{ array1[k1] };

array2[k2] = array1[k1] - x0;

x0 = x1;

}

}

10
Adjacent differenceAdjacent difference

Generalizing the operation

• Our operation is calculating the difference:

– As before, should we not allow the user to specify the operation?

• This, too, is straight-forward:
void adjacent_difference(

double array1[], std::size_t begin1, std::size_t end1,

double array2[], std::size_t begin2,

std::function<double(double, double)> difference

) {

double x0{ array1[begin1] };

array2[begin2] = x0;

for (std::size_t k1{begin1 + 1}, k2{begin2 + 1};

k1 < end1; ++k1, ++k2) {

double x1{ array1[k1] };

array2[k2] = difference(array1[k1], x0);

x0 = x1;

}

}

11
Adjacent differenceAdjacent difference

Example 1

• What does this code do?
int main() {

std::size_t N{ 10 };

double data[N]{ 3.2, -5.4, 1.9, 8.6, 0.7,

6.5, 2.0, 7.1, -4.3, -9.8 };

std::cout << adjacent_difference(data, 0, N,

data, 0, difference) << std::endl;

return 0;

}

double difference(double x, double y) {

return x - y;

}

12
Adjacent differenceAdjacent difference

Example 2

• An interesting example from cppreference.com
int main() {

std::size_t N{ 10 };

double data[N]{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

std::cout << adjacent_difference(data, 0, N - 1,

data, 1, sum) << std::endl;

return 0;

}

double sum(double x, double y) {

return x + y;

}

13
Adjacent differenceAdjacent difference

The standard library

• In the standard library, there is a

std::divided_difference(…)

in the header

#include <numeric>

– Rather than passing an array pointer and indices,
you pass the addresses of array[begin] and array[end]

14
Adjacent differenceAdjacent difference

Summary

• Following this lesson, you now:

– Understand what the adjacent difference is

– Know how to implement it

– Understand it may be implemented in place

– Looked at generalizations and some examples

15
Adjacent differenceAdjacent difference

References

[1] https://en.cppreference.com/w/cpp/algorithm/adjacent_difference

16
Adjacent differenceAdjacent difference

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

17
Adjacent differenceAdjacent difference

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

